标签: OpenCV


  1. 结合连通块平均分割以及投影矫正的验证码分割算法

    在上一节 中记录了基于投影的验证码矫正算法的实现。通过矫正,我们可以比较好的将倾斜的字符归一成较为规整的字符,接下来我们需要对矫正后的字符进行分割。简单的方法大概是投影法了,但是很明显,这样做的可靠性并不够。我们也可以找到整张图的最左端和最右端然后平均分割,但是在字符大小不一样的情况下效果也太好。还有个朴素的方法就是找连通块,但是由于存在字符粘连问题,连通块也不能完全区分字符。那么我这里就结合后两种方法,先进行连通块分割,对于能分割的字符直接进行后续处理,对于不能分割的字符再用平均分割的方法分割…

    Computer Vision, Python, OpenCV阅读全文

  2. OpenCV的扩展包opencv_contrib的安装

    近日想使用OpenCV里面的诸如SIFT、SURF之类的特征提取算法,结果突然发现OpenCV3.0.0这里并没有书上讲的关于SIFT的函数。查了半天才知道,原来有大量的函数并不在OpenCV的稳定发布版本里,而是在OpenCV_contrib这个扩展包里面。搞了半天才把这玩意搞定(自己傻),下面记录下安装的过程,方便日后的安装。 下载opencv_contrib包独立于opencv的主体,发布在他的github上。直接在这里下载适合的版本即可。 安装这个玩意的安装其实不难,照着解压下来的REA…

    OpenCV, Linux阅读全文

  3. 图像处理的Gamma矫正

    Gamma矫正这个东西听上去挺玄乎,其实特别简单。就是为了调节照相机拍摄的图像的色调,使他更加符合人眼的观测效果(主要用在)。说白了就是一种幂函数型的色调曲线,即对于每个像素的灰度$I$我们把他变成$I^{gamma}$,当然,在这之前,我们得把灰度值$I$归一化到(0,1)的范围内。 这个gamma分为大于一和小于一的情况。当他大于一的时候,很明显这个幂函数在(0,1)的区间内是下凸的,图像会变暗;当他小于一的时候,这个幂函数在(0,1)的区间内是上凸的,图像会变亮。通常认为人眼的gamma值…

    OpenCV, Python, Computer Vision, MathJax阅读全文

  4. OpenCV计算图像的梯度特征

    计算图像的梯度是在进行图像处理时经常用到的方法,但是这玩意自己手写未免效率低而且容易出错。OpenCV里集成了相应的函数,只不过用的人好像并不多导致我找了半天才找到。姑且记一下以备日后使用。 计算像素梯度的绝对值这个用到了cv2.magnitude方法,具体用法如下: sobelx=cv2.Sobel(im,cv2.CV_64F,1,0,ksize=3)#1,0表示只在x方向求一阶导数 sobely=cv2.Sobel(im,cv2.CV_64F,0,1,ksize=3)#0,1表示只在y方向求…

    OpenCV, Python, Computer Vision阅读全文